РЕШАЕМ МАТЕМАТИКУ ВМЕСТЕ!
 
СТУДЕНТАМ:    Учебники     Решебники    Шпаргалки    Контрольные работы   Видео уроки

ШКОЛЬНИКАМ:  ГДЗ - 1 класс  2 класс  3 класс  4 класс  5 класс  6 класс  7 класс  8 класс  9 класс  10 класс  11 класс

Главная » Файлы » Учебные материалы » Теория вероятностей и мат. статистика
Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. Т.2

28.12.2011, 23:49
Второй том всемирно известного двухтомного курса теории вероятностей, написанного выдающимся американским математиком. Классическое учебное руководство, оказавшее значительное влияние на развитие современной теории вероятностей и подготовку специалистов. Перевод заново выполнен со второго переработанного автором издания. Предыдущее издание выходило в русском переводе. 
Для математиков - от студентов до специалистов по теории вероятностей, для физиков и инженеров, применяющих вероятностные методы.

ОГЛАВЛЕНИЕ 

Из предисловия к русскому изданию 1967 5
От переводчика 6
Предисловие к первому изданию 7
Предисловие ко второму изданию 10
Обозначения 12

Глава I. Показательные и равномерные плотности 13
§1. Введение 13
§2. Плотности. Свертки 15
§3. Показательная плотность 21
§4. Парадоксы, связанные с временем ожидания. Пуассоновский процесс 24
§5. Устойчивость неудач 29
§6. Времена ожидания и порядковые статистики 31
§7. Равномерное распределение 35
§8. Случайные разбиения 39
§9. Свертки и теоремы о покрытии 41
§10. Случайные направления 44
§11. Использование меры Лебега 48
§12. Эмпирические распределения 51
§13. Задачи

Глава II. Специальные плотности. Рандомизация 60
§1. Обозначения и определения 60
§2. Гамма-распределения 60
§3. Распределения математической статистики, связанные с гамма-распределением 63
§4. Некоторые распространенные плотности 65
§5. Рандомизация и смеси 69
§6. Дискретные распределения 72
§7. Бесселевы функции и случайные блуждания 74
§8. Распределения на окружности 78
§9. Задачи 81

Глава III. Многомерные плотности. Нормальные плотности и процессы 84
§1. Плотности 84
§2. Условные распределения 90
§3. Возвращение к показательному и равномерному распределениям 92
§4. Характеризация нормального распределения 96
§5. Матричные обозначения. ковариационная матрица 99
§6. Нормальные плотности и распределения 102
§7. Стационарные нормальные процессы 107
§8. Марковские нормальные плотности 
§9. Задачи 120

Глава IV. Вероятностные меры и пространства 124
§1. Бэровские функции 125
§2. Функции интервалов и интегралы 128
§3. Измеримость 134
§4. Вероятностные пространства. Случайные величины 138
§5. Теорема о продолжении 142
§6. Произведения пространст. Последовательности независимых случайных величин 145
§7. Нулевые множества. Пополнение 149
 
Глава V. Вероятностные распределения 151
§1. Распределения и математические ожидания 152
§2. Предварительные сведения 162
§3. Плотности 164
§4. Свертки 164
§5. Симметризация 175
§6. Интегрирование по частям. Существование моментов 178
§7. Неравенство Чебышева 179
§8. Дальнейшие неравенства. Выпуклые функции 180
§9. Простые условные распределения. Смеси 185
§10. Условные распределения 189
§11. Условные математические ожидания 191
§12. Задачи

Глава VI. Некоторые важные распределения и процессы 198
§1. Устойчивые распределения 198
§2. Примеры 203
§3. Безгранично делимые распределения 206
§4. Процессы с независимыми приращениями 210
§5. Обобщенные пуассоновские процессы и задачи о разорении 213
§6. Процессы восстановления 215
§7. Примеры и задачи 219
§8. Случайные блуждания 224
§9. Процессы массового обслуживания 228
§10. Возвратные и невозвратные случайные блуждания 235
§11. Общие марковские цепи 240
§12. Мартингалы 245
§13. Задачи 252

Глава VII. Законы больших чисел. Применения в анализе 255
§1. Основная лемма. Обозначения 255
§2. Полиномы Бернштейна. Абсолютно монотонные функции 258
§3. Проблема моментов 260
§4. Применение к симметрично зависимым случайным величинам 265
§5. Обобщенная формула Тейлора и полугруппы 267
§6. Формулы обращения для преобразования Лапласа 270
§7. Законы больших чисел для одинаково распределенных случайных величин 271
§8. Усиленный закон больших чисел 275
§9. Обобщение для мартингалов 280
§10. Задачи

Глава VIII. Основные предельные теоремы 285
§1. Сходимость мер 285
§2. Специальные свойства 291
§3. Распределения как операторы 293
§4. Центральная предельная теорема 297
§5. Бесконечные свертки 305
§6. Теоремы о выборе 307
§7. Эргодические теоремы для цепей Маркова 311
§8. Правильно менющиеся функции 315
§9. Асимптотические свойства правильно меняющихся функций 320
§10. Задачи 326

Глава IX. Безгранично делимые распределения и полугруппы 332
§1. Общее знакомство с темой 332
§2. Полугруппы со сверткой 335
§3. Подготовительные леммы 339
§4. Случай конечных дисперсий 341
§5. Основные теоремы 343
§6. Пример: устойчивые полугруппы 349
§7. Схемы серий с одинаковыми распределениями 352
§8. Области притяжения 356
§9. Различные распределения. Теорема о трех рядах 360
§10. Задачи 363

Глава X. Марковские процессы и полугруппы 366
§1. Псевдопуассоновский тип 367
§2. Вариант: линейные приращения 369
§3. Скачкообразные процессы 371
§4. Диффузионные процессы 378
§5. Прямое уравнение. Граничные условия 383
§6. Диффузия в многомерном случае 390
§7. Подчиненные процессы 392
§8. Марковские процессы и полугруппы 396
§9. "Показательная формула" в теории полугрупп 400
§10. Производящие операторы. Обртное уравнение 403

Глава XI. Теория восстановления 406
§1. Теорема восстановления 406
§2. Доказательство теоремы восстановления 412
§3. Уточнения 415
§4. Устойчивые (возвратные) процессы восстановления 417
§5. Число N1 моментов восстановления 422
§6. Обрывающиеся (невозвратные) процессы 424
§7. Различные применения 427
§8. Существование пределов в случайных процессах 429
§9. Теория восстановления на всей прямой 431
§10. Задачи 437

Глава XII. Случайные блуждания 440
§1. Основные понятия и обозначения 441
§2. Двойственность. Типы случайных блужданий 445
§3. Распределение лестничных высот. Факторизация Винера - Хопфа 450
§4. Примеры 457
§5. Применения 461
§6. Одна комбинаторная лемма 465
§7. Расспределение лестничных моментов 466
§8. Закон арксинуса 470
§9. Различные дополнения 477
§10. Задачи 479

Глава XIII. Преобразование Лапласа. Таубероны теоремы. Резольвенты 484
§1. Определения. Теорема непрерывности 484
§2. Элементарные свойства 489
§3. Примеры 492
§4. Вполне монотонные функции. Формулы обращения 495
§5. Тауберовы теоремы 498
§6. Устойчивые распределения 504
§7. Безгранично делимые распределения 506
§8. Многомерный случай 509
§9. Преобразования Лапласа для полугрупп 511
§10. Теорема Хилле - Иосиды 516
§11. Задачи 521

Глава XIV. Применение преобразования Лапласа 524
§1. Уравнение восстановления: теория 524
§2. Уравнение типа уравнения восстановления: примеры 526
§3. Предельные теоремы, включающие распределения арксинуса 529
§4. Периоды занятости и соответствующие ветвящиеся процессы 531
§5. Диффузионные процессы 534
§6. Процессы размножения и гибели. Случайные блуждания 538
§7. Дифференциальные уравнения Колмогорова 543
§8. Пример: чисты процесс размножения 548
§9. Вычисление эргодических пределов и времен первого прохождения 551
§10. Задачи 555

Глава XV. Характеристические функции 558
§1. Определение. Основные свойства 558
§2. Специальные плотности. смеси 562
§3. Единственность. Формулы обращения 568
§4. Свойства регулярности 573
§5. Центральная предельная теорема для одинаково распределенных слагаемых 576
§6. Условие Линдеберга 580
§7. Характеристические функции многомерных распределений 584
§8. Две характеризации нормального распределения 587
§9. Задачи 590

Глава XVI. Асимтотические разложения, связанные с центральной предельной теоремой 595
§1. Обозначения 596
§2. Асимптотические разложения для плотностей 597
§3. Сглаживание 601
§4. Асимптотические разложения для распределений 604
§5. Теорема Верри - Эссена 608
§6. Асимптотические разложения в случае различно распределенных слагаемы 612
§7. Большие отклонения 615

Глава XVII. Безгранично делимые распределения 621
§1. Безгранично делимые распределения 621
§2. Канонические формы. Основная предельная теорема 625
§3. Примеры и специальные свойства 634
§4. Специальные свойства 638
§5. Устойчивые распределения и их области притяжений 643
§6. Устойчивые плотности 651
§7. Схема серий 653
§8. Класс L 659
§9. Частичное притяжение. "Универсальные законы" 661
§10. Бесконечные свертки 664
§11. Многомерный случай 665
§12. Задачи 666

Глава XVIII. Применение методов Фурье к случайным блужданиям 670
§1. Основное тождество 670
§2. Конечные интервалы. Вальдовская аппроксимания 673
§3. Факторизация Винера - Хола 676
§4. Выводы и применения 682
§5. Две более основательные теоремы 685
§6. Критерии возвратности 687
§7. Задачи 690

Глава XIX. Гармонический анализ 693
§1. Равенство Парсепаля 693
§2. Положительно определенные функции 695
§3. Стационарные процессы 697
§4. Ряды Фурье 701
§5. Формула суммирования Пуассона 704
§6. Положительно определенные последовательности 708
§7. L2 теория 711
§8. Случайные процессы и стохастические интегралы 718
§9. Задача 725

Ответы на задачи 728
Литература 732
Предметный указатель 734
Именной указатель744




Размер файла: (9.17Mb)

Категория: Теория вероятностей и мат. статистика | Добавил: ZeXeDeR | Теги: Теория вероятностей, математика
Просмотров: 1855 | Загрузок: 425 | Рейтинг: 0.0/0


Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]



ВЫБОР ПО КАТЕГОРИЯМ:

Аналитическая геометрия и алгебра [0]
Высшая алгебра [52]
История математики [55]
Математика для технарей [21]
Математика для экономистов, юристов и т.д.. [5]
Математическая логика и теория алгоритмов [40]
Теория вероятностей и мат. статистика [28]
Теория чисел [33]
Учебники по математике [46]



При полном или частичном использовании материалов
активная ссылка на портал VMATE.RU обязательна


Высшая математика онлайн - всё бесплатно, наш портал создан специально для студентов кому интересна высшая математика. У нас на портале возможно скачать бесплатно учебники по высшей математике, книги по математике или сделать заказ учебных пособий, скачать контрольные по высшей математике, заказать, задачники по высшей математики и решебники. Оставить запрос по предмету - аналитическая геометрия или задать вопрос - справочная по математике Заказать решение и т.д. Высшая математика онлайн - математический портал и здесь собраны шпаргалки по высшей математике и видео уроки. Добро пожаловать! Вход